Conformational Flip of Nonactivated HCN2 Channel Subunits Evoked by Cyclic Nucleotides.
نویسندگان
چکیده
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric proteins that evoke electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are activated by hyperpolarizing voltage but are also receptors for the intracellular ligand adenosine-3',5'-cyclic monophosphate (cAMP) that enhances activation but is unable to activate the channels alone. Using fcAMP, a fluorescent derivative of cAMP, we analyzed the effect of ligand binding on HCN2 channels not preactivated by voltage. We identified a conformational flip of the channel as an intermediate state following the ligand binding and quantified it kinetically. Globally fitting the time courses of ligand binding and unbinding revealed modest cooperativity among the subunits in the conformational flip. The intensity of this cooperativity, however, was only moderate compared to channels preactivated by hyperpolarizing voltage. These data provide kinetic information about conformational changes proceeding in nonactivated HCN2 channels when cAMP binds. Moreover, our approach bears potential for analyzing the function of any other membrane receptor if a potent fluorescent ligand is available.
منابع مشابه
Probability Fluxes and Transition Paths in a Markovian Model Describing Complex Subunit Cooperativity in HCN2 Channels
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are voltage-gated tetrameric cation channels that generate electrical rhythmicity in neurons and cardiomyocytes. Activation can be enhanced by the binding of adenosine-3',5'-cyclic monophosphate (cAMP) to an intracellular cyclic nucleotide binding domain. Based on previously determined rate constants for a complex Markovian ...
متن کاملInactivation of L-type calcium channel modulated by HCN2 channel.
Ca(2+) entry is delicately controlled by inactivation of L-type calcium channel (LTCC) composed of the pore-forming subunit alpha1C and the auxiliary subunits beta1 and alpha2delta. Calmodulin is the key protein that interacts with the COOH-terminal motifs of alpha1C, leading to the fine control of LTCC inactivation. In this study we show evidence that a hyperpolarization-activated cyclic nucle...
متن کاملMiRP1 modulates HCN2 channel expression and gating in cardiac myocytes.
MinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotide-gated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse initiation in that tissue, such an inter...
متن کاملInterdependence of Receptor Activation and Ligand Binding in HCN2 Pacemaker Channels
HCN pacemaker channels are tetramers mediating rhythmicity in neuronal and cardiac cells. The activity of these channels is controlled by both membrane voltage and the ligand cAMP, binding to each of the four channel subunits. The molecular mechanism underlying channel activation and the relationship between the two activation stimuli are still unknown. Using patch-clamp fluorometry and a fluor...
متن کاملSalt Bridges and Gating in the COOH-terminal Region of HCN2 and CNGA1 Channels
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 109 11 شماره
صفحات -
تاریخ انتشار 2015